
Eur. Phys. J. B 22, 43–51 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. We consider the energy density of a spin polarized ν = 1/2 system for low temperatures. We
show that due to the elimination of the magnetic field and the field of the positive background charge in
the calculation of the grand canonical potential of Chern-Simons systems through a mean field formalism
one gets corrections to the well known equations which determine the chemical potential and the energy
from the grand canonical potential. We use these corrected equations to calculate the chemical potential
and the energy of the ν = 1/2 system at low temperatures in two different approximations.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
73.43.-f Quantum Hall effects – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

The combination of an electronic interaction and a strong
magnetic field in a two-dimensional electron system yields
a rich variety of phases. These are best classified by the
filling factor ν, which is the electron density divided by the
density of a completely filled Landau level. In this work we
mainly consider energy calculations on systems with filling
factor ν = 1/2. These systems are most suitably described
by the Chern-Simons theory. Within this theory one gets
new quasi-particles (composite fermions). In the case of
filling fraction ν = 1/2 every electron gets two magnetic
flux quantums to build a composite fermion which does
not see any magnetic field in first approximation (mean
field). A field theoretical language for this scenario was
first established by Halperin, Lee, Read (HLR) (1992) [1]
as well as Kalmeyer and Zhang (1992) [2] for the ν = 1/2
system. The interpretation of many experiments supports
this composite fermion picture. We mention transport ex-
periments with quantum (anti-) dots [3], and focusing ex-
periments [4] here. An overview of further experiments can
be found in [5].

HLR studied many physical quantities within the
random-phase approximation (RPA). Most prominent
among these is the effective mass of the composite
fermions which they found to diverge at the Fermi sur-
face [1,6]. Besides the theory of HLR there are other al-
ternative formulations of the composite fermionic picture
which are mainly based on a gauge transformation of the
Chern-Simons Hamiltonian [7,8].

In the following we will apply the Chern-Simons the-
ory of HLR to calculate the chemical potential µ and the
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ground state energy U of the spin polarized ν = 1/2 sys-
tem for low temperatures T ≥ 0. In [9,10] we calculated
the grand canonical potential of the ν = 1/2 system for
temperature T = 0 in RPA. The energy was calculated
from this potential by fixing the chemical potential to the
value of a free electron system. Since the RPA consists
of no anomalous Feynman graphs this is motivated as a
good approximation for T = 0 by the Luttinger-Ward
theorem [11]. For temperature T ≥ 0 one has to deter-
mine the chemical potential µ by other methods. In the
thermodynamic theory the chemical potential µ and the
energy U is calculated by the equations −∂/(∂µ)Ω = ρ
and ∂/(∂β)(βΩ) + µρ = U from the grand canonical po-
tential Ω. ρ is the density of the electrons. We calculated
in [9,10] the grand canonical potential of the Hamilto-
nian of electrons in a magnetic field B subjected by an
electron-electron interaction and an interaction with a
positive background field ρB as a function of µ, β. We
eliminated B and ρB from the grand canonical potential
Ω by the constraint B = 2πφ̃ρ and ρB = ρ. By doing this,
it is not clear whether the relations −∂/(∂µ)Ω = ρ and
∂/(∂β)(βΩ) + µρ = U are further valid for the potential
where these two external variables are eliminated through
an implicit function. We notice that the elimination of ρB
by ρB = ρ is also a standard method in calculating the
grand canonical potential of the Coulomb gas [12]. We will
show in Section 2 that the above equations for the deter-
mination of µ and U from the grand canonical potential is
further valid in the case of the Coulomb gas. In the case of
the ν = 1/φ̃ Chern-Simons gas we will show that the above
relations get additional terms of correction which are not
too small. We will show that these additional terms can
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be calculated from the variable eliminated grand canonical
potential.

In [9,10] we calculate the e2-part of the ground state
energy where e2 is the coupling constant of the Coulomb
potential V ee = e2/r. This is the first term of an e2-
expansion of the Coulomb energy and agrees with the
Coulomb energy calculated for electrons which ‘live’ in the
lowest Landau level. We now have the following two op-
tions to expand the calculation to low temperatures T > 0.

e2√ρ� 1
β
� ρ

m
, (1)

1
β
� e2√ρ� ρ

m
· (2)

Here m is the band mass of the electrons and β = 1/(kBT )
where kB is the Boltzmann constant. The first expan-
sion (1) results in an expansion in m/(ρ2β) for the tem-
perature corrections of every T = 0-term. The second ex-
pansion (2) results in an expansion in 1/(e2√ρβ) for the
temperature corrections.

In a perturbational treatment of the Chern-Simons
theory the grand canonical potential is given by the first
expansion (1) (one calculates the grand canonical poten-
tial around a free grand canonical potential Ω0. The low
temperature expansion of Ω0 correspondence to an expan-
sion which is valid in the parameter range (1)). Thus we
will calculate the grand canonical potential at first in the
Hartree-Fock approximation. It is well known [14], that
the chemical potential (for φ̃ = 2) respectively the ground
state energy contains exponentially vanishing temperature
corrections for small T for a system of electrons in a mag-
netic field without Coulomb interaction. One could not
obtain this feature by perturbational methods. This be-
haviour of the temperature corrections of the chemical
potential and the energy is no longer valid for electrons
in a magnetic field taking into consideration the Coulomb
interaction. Therefore, in the following we will calculate
only the Coulomb part of the ground state energy. It is an
interesting property of the Coulomb energy of the Chern-
Simons gas that the Coulomb exchange graph yields most
of the energy within the RPA [10]. We will calculate in
this paper the Coulomb energy of the Hartree-Fock ap-
proximation of the Chern-Simons theory for low temper-
atures T > 0. This graph was calculated by Isihara and
Toyoda [13] for the case of the Coulomb gas including
the spin degrees of freedom. There are two reasons for a
difference between the Coulomb part of the Hartree-Fock
energy of the Chern-Simons gas and the Coulomb gas.
First, the Chern-Simons gas is spin polarized which is not
the case for the Coulomb gas. This results in a much less
steeper slope of the Coulomb energy as a function of the
temperature for the Chern-Simons gas in comparison to
the Coulomb gas. Second, as mentioned above, we have
different equations for the determination of the chemical
potential and the energy for these two systems. We will
show that this difference decreases the slope of the en-
ergy curve of the Chern-Simons gas further in comparison
to the Coulomb gas. This decreasing of the slope can be
explained by perturbational arguments.

It is possible to calculate the effective mass of an in-
teracting system through comparing its specific heat with
the specific heat of an electron gas without Coulomb
interaction for B = 0. By comparing the two expan-
sions (1) and (2) with the scaling of the effective mass [1]
m∗ ∼ √ρ/e2 of the Chern-Simons theory we obtain that
only the second expansion leads to the correct scaling.
HLR [1] and Kim, Lee [15] calculate the effective mass in
the perturbational Chern-Simons theory by a resumma-
tion of the grand canonical potential through the RPA.
With the help of this grand canonical potential they got
a logarithmic diverging effective mass. We will calculate
the chemical potential and the energy in the parameter
range (2) by using the temperature corrections of the
grand canonical potential calculated by HLR and Kim,
Lee. We will get the same energy as in the simplifica-
tion [15] by setting the chemical potential on the lowest
Landau level and neglecting the additional terms of correc-
tion in determining the energy from the grand canonical
potential.

The paper is organized as follows: In Section 2 we cal-
culate the equations determining the chemical potential
and the ground state energy from a grand canonical po-
tential of the ν = 1/φ̃ system where the fields B and ρB
are eliminated. In Section 3 we calculate the Coulomb en-
ergy and the chemical potential of the ν = 1/2 system for
temperatures T > 0 within the two parameter ranges (1)
and (2).

2 The determination of the chemical
potential and the energy in ν = 1/φ̃
Chern-Simons systems

In this section we show that one gets new equations to
determine the chemical potential and the energy from the
grand canonical potential in Chern-Simons theories where
the external fields, i.e. the magnetic field B and the den-
sity of the positive background ρB are eliminated by some
mean field conditions. We will show further that this is not
the case for the Coulomb gas. In the following we will con-
sider interacting spin polarized electrons moving in two
dimensions in a strong magnetic field B directed in the
positive z-direction of the system. The electronic density
of the system is chosen such that the lowest Landau level
of a non-interacting system is filled to a fraction ν = 1/φ̃
where φ̃ is an even number. We are mainly interested in
φ̃ = 2. The Hamiltonian of electrons in a magnetic field is
given by

H(A, e2) =
∫

d2r

[
1

2m

∣∣(− i∇+ A
)
Ψ(r)

∣∣2
+

1
2

∫
d2r′

{
: (|Ψ(r)|2 − ρB)V ee(|r− r ′|)(|Ψ(r ′)|2− ρB):

}]
.

(3)

Here Ψ+(r) creates (and Ψ(r) annihilates) an electron with
coordinate r. : O : is the normal ordering of the opera-
tor O. V ee(r) = e2/r is the Coulomb interaction where
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e2 = q2
e/ε. qe is the charge of the electrons and ε is the

dielectric constant of the background field ρB. A(r) is the
vector potential A = 1/2 B× r and B is a homogeneous
magnetic field in z-direction B = Bez where ez is the
unit vector in z-direction. We suppose throughout this pa-
per that B is a positive number. We used the convention
~ = 1 and c = 1 in the above formula (3). Furthermore,
we set qe = 1 for the coupling of the magnetic potential
to the electrons. After performing a Chern-Simons trans-
formation [16] of the electronic wave function one gets the
Hamiltonian of the composite fermions as:

HCS(A, e2) =
∫

d2r

[
1

2m

∣∣(− i∇+ A + aCS

)
Ψ(r)

∣∣2
+

1
2

∫
d2r′

{
: (|Ψ(r)|2 − ρB)V ee(|r− r′|)(|Ψ(r′)|2 − ρB):

}]
.

(4)

The Chern-Simons operator aCS is defined by aCS(r) =
φ̃
∫

d2r′f(r − r′)Ψ+(r′)Ψ(r′). Here Ψ+(r) creates (and
Ψ(r) annihilates) a composite fermion with coordinate
r. The function f(r) is given by f(r) = −ez × r/r2.
From this Hamiltonian we obtain in the case of fill-
ing fraction ν = 1/φ̃ and electro neutrality, i.e. B =
2πφ̃〈ρ̂〉 and ρB = 〈ρ̂〉, that in the perturbation the-
ory of HCS the Hartree couplings A + φ̃

∫
d2r′ f(r −

r′)〈Ψ+(r′)Ψ(r′)〉 and
∫

d2r′ V ee(|r − r′|)(〈Ψ+(r′)Ψ(r′)〉 −
ρB) are zero. If we calculate the Feynman graphs of
the theory under these conditions we eliminate the ex-
ternal fields B and ρB of the partition function Z =
Tr[e−β(HCS(A,e2)−µN̂)] = Tr[e−β(H(A,e2)−µN̂ ]. Here Tr[·] is
the trace of the argument. N̂ is the particle number op-
erator N̂ =

∫
d2r Ψ+(r)Ψ(r). The variables left in Ω are

µ and β. In the following we will deal with three different
systems with a growing degree of complication.

At first we deal with the Coulomb gas (A = 0
in (3)). In perturbational calculations of this system one
often calculates the Feynman graphs under the condition
ρB = 〈ρ̂〉 [12]. ρ̂(r) is the density operator Ψ+(r)Ψ(r).
〈·〉 is the expectation value of the Gibb’s potential of the
Hamiltonian. For a homogeneous system we have 〈ρ̂(r)〉 =
〈Ψ+(r)Ψ(r)〉 = 〈ρ̂〉. Thus one calculates a partition func-
tion Z ′(µ, β) from Z(µ, β, ρB) = Tr[e−β(H(0,e2)−µN̂)] by

Z ′(µ, β) := Z (µ, β, ρB(µ, β)) , (5)

ρB(µ, β) :=
1
Aβ

∂

∂µ
log (Z) (µ, β, ρB(µ, β)). (6)

A is the area of the system. We employed in (5) and (6)
the mathematical notation for the ordering of the deriva-
tion and insertion of the arguments of the functions. This
means for example for equation (6) that we have to par-
tially derivate at first the function Z depending on the
variables (µ, β, ρB). Afterwards we have to insert the ex-
pressions given in the function brackets. We have to point
out explicitly that ρB(µ, β) is a function of (µ, β) which
is defined by equation (6). We now want to determine the
chemical potential µ and the energy U from Z ′. At first

we deal with the derivation of Z with respect to µ:

1
β

∂

∂µ
log (Z) (µ, β, ρB(µ, β)) =

1
β

∂

∂µ
log (Z ′) (µ, β) +K1

= A 〈ρ̂〉 . (7)

K1 is defined by

K1 = −
∫
A

∫
A

d2rd2r′(〈ρ̂(r)〉 − ρB)V ee(r − r′)

× ∂

∂µ
ρB(µ, β)

∣∣∣∣
〈ρ̂〉=ρB

= 0. (8)

Thus we get the following equations determining the
chemical potential µ and the energy U of the Coulomb
system − ∂

∂µΩ
′(µ, β) = 〈ρ̂〉 and U = ∂

∂β (βΩ′)(µ, β)+µ〈ρ̂〉.
The grand canonical potential Ω′(µ, β) is defined by Ω′ =
−1/(βA) log(Z ′). From these equations we obtain that in
the case of the Coulomb gas we get no correction to the
well known equations for the determination of the chemi-
cal potential and the energy.

In the following we will derive equations to determine µ
and U for the ν = 1/φ̃ Chern-Simons gas with no Coulomb
interaction and T = 0. As mentioned earlier the partition
function Z(µ, β,B) = Tr[e−β(H(A,0)−µN̂)] of this system
is usually calculated under the constraint 〈ρ̂〉 = B/(2πφ̃)
giving Z ′(µ, β). So Z ′ is defined by

Z ′(µ, β) := Z (µ, β,B(µ, β)) , (9)

B(µ, β) := (2πφ̃)
1
Aβ

∂

∂µ
log (Z) (µ, β,B(µ, β)) . (10)

From these definitions we get for the derivate of the par-
tition function Z with respect to µ

1
β

∂

∂µ
log(Z)(µ, β,B(µ, β)) =

1
β

∂

∂µ
log(Z ′)(µ, β) +K2

= A〈ρ̂〉. (11)

K2 is defined by

K2 = − 1
2π

∫
A

∫
A

d2r d2r′ 〈̂j〉(r)f(r − r′)
∂

∂µ
B(µ, β). (12)

ĵ(r) is the second quantized current opera-
tor (1/2m)(Ψ+(r)(−i∇ + A(r))Ψ(r) + [(−i∇ +
A(r))Ψ(r)]+Ψ(r)). It is clear that the expectation
value of the current operator in (12) is built with respect
to the Gibb’s operator of the Hamiltonian H(A, 0) (3).
At first glance one may think that K2 is zero because
we have 〈̂j〉(r) = 0 for A → ∞. We have to be careful
with such argumentation because the multiplicative term
f(r − r′) in (12) is not integrable for |r − r′| → ∞. The
right way to calculate K2 is to evaluate 〈̂j〉(r) for a finite
system. Then after integrating (12) for this finite system
one should take the limit A →∞. For a finite system we
have nothing but a current at the edge of the system. This
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ĵ(r)

ρ̂(r′)

φ̃ f(r− r′)

Fig. 1. Density graphs, which contribute to the µ-correction.

ring current was calculated perturbationally by Shankar
and Murthy [7]. With the help of this ring current one
could calculate K2. In the following we will calculate K2

by another method which results in the same value for
K2 but which does not use any perturbational results.
Using the one particle eigen functions u0l of an electron
in a magnetic field in the lowest Landau level (symmetric
gauge) we get

− 1
2π

∫
d2r d2r′

〈
u0k |̂j(r)|u0l

〉
f(r− r′) =

1
2m

δk,l. (13)

In (13) we supposed that u0k is orthogonal to u0l for k 6= l.
For deriving (13) we used A(r) = −B/(2π)

∫
d2r′f(r −

r′) = B/2(−y, x).
By using (10, 11, 12) and (13) we get

− ∂

∂µ
Ω′(µ, β) +

πφ̃

m
〈ρ̂〉 ∂

∂µ
〈ρ̂〉(µ, β) = 〈ρ̂〉. (14)

Here we used B(µ, β) = 2πφ̃〈ρ̂〉(µ, β). So we have to solve
a differential equation to get the chemical potential for a
given density 〈ρ̂〉. For the determination of the energy U
from Ω′ we get with the help of a similar derivation as
above

U =
∂

∂β
(βΩ′)(µ, β) − πφ̃

m
β〈ρ̂〉 ∂

∂β
〈ρ̂〉(µ, β) + µ〈ρ̂〉. (15)

Thus we obtain from the equations (14) and (15) an ad-
ditional term in comparison to the equations which deter-
mine the energy and the chemical potential from the grand
canonical potential Ω = −1/(βA) log(Z). In Figure 1 we
show density graphs of the Hamiltonian HCS(A, e2) which
contributes to this additional term. Since 〈ρ̂〉 is finite for
T = 0 the second term in (15) is zero. It is well known
that the energy and the chemical potential of electrons
in a magnetic field at T = 0 are given by U = µρ and
µ = πρφ̃/m. So we get from (14) and (15)

− ∂

∂µ
Ω′(µ, β) = 0,

∂

∂β
(βΩ′)(µ, β) = 0. (16)

We obtain from these equations that in the case of an
interaction free Chern-Simons system the correction to the
equations determining µ and U are not neglectable. This
should be also the case for a Chern-Simons system taking
into account the Coulomb interaction.

In the following part of this section we will de-
rive the equations for getting µ and U of the ν =
1/φ̃ Chern-Simons gas for low temperatures taking into

consideration the Coulomb interaction. In the mean
field treatment of the ν = 1/φ̃ Chern-Simons the-
ory one usually calculates from the partition function
Z(µ, β, ρB, B) = Tr[e−β(H(A,e2)−µN̂)] the following re-
duced partition function

Z ′(µ, β) = Z (µ, β, ρB(µ, β), B(µ, β)) . (17)

ρB(µ, β), B(µ, β) are defined by (6, 10). It is now possible
to make the same derivations for this system as in the case
of the Chern-Simons system with no Coulomb interaction.
By doing this we get equation (11). Unfortunately it is
then hard to calculate the expectation value (12) for this
system because we have a mixing of higher Landau levels.
Nevertheless one can get the equations which determine
µ and U by scaling arguments. This will be done in the
following. From the definition of Z ′ we get

1
Aβ

∂

∂µ
log (Z) (µ, β, ρB(µ, β), B(µ, β)) =

1
Aβ

[
− ∂

∂B
log (Z) (µ, β, ρB(µ, β), B(µ, β))

∂

∂µ
B(µ, β)

− ∂

∂ρB
log (Z) (µ, β, ρB, B(µ, β))

∂

∂µ
ρB(µ, β)

+
∂

∂µ
log (Z ′) (µ, β)

]
. (18)

As in the case of the Coulomb gas the second term on the
right hand side is zero. Thus we have to calculate the first
term on the right hand side of equation (18). With the
help of the definitions

anp =
∫

d2r unp(r)Ψ(r),

V een1 p1,n2 p2,n3 p3,n4 p4
=
∫

d2rd2r′ V ee(r− r′)

× u∗n1p1
(r)un2p2(r)u∗n3p3

(r′)un4p4(r′) (19)

the operators H0(B) and Hee(B) are defined by

H0(B) =
∑
n,p

B

m

(
n+

1
2

)
a+
npanp, (20)

Hee(B) =
1
2

∑
n1p1,n2p2,
n3p3,n4p4

V een1p1,n2p2,n3p3,n4p4
(21)

× :
(
a+
n1p1

an2p2 − ρB
) (
a+
n3p3

an4p4 − ρB
)

: .

unp are the one particle wave functions in the symmetric
gauge for the magnetic field B in the nth landau level [17].
With the help of these operators we get for the grand
canonical potential Ω = −1/(βA) log(Z)

Ω(µ, β, ρB , B) = − 1
β

lim
A→∞

1
A

× log
[
Tr
[
e−β(H0(B)+Hee(B)−µN̂)

]
B,A

]
.

(22)
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Tr[...]B,A is the trace of slater determinants of Landau
functions which have their support in the area A. The
number of Landau functions in this area is proportional
to B [17]. With the help of a length scaling L → L/

√
B

(i.e. we implement the trace in (22) in the Landau basis
and make the substitution r→ r/

√
B) we get

Ω(µ, β, ρB , B) = −B
β

lim
A→∞

1
A

× log
[
Tr
[
e−β(BH0( B

|B| )+
√
BHee(

B
|B| )−µN̂)

]
B
|B| ,A

]
. (23)

Thus we get

∂

∂B
Ω(µ, β, ρB, B) =

1
B

(
〈H0(B)〉 +

1
2
〈Hee(B)〉+Ω(µ, β, ρB , B)

)
. (24)

With the help of (18) and 〈ρ̂〉 = 1/(2πφ)B(µ, β) we get for
the equation determining the chemical potential µ fromΩ′(
〈H0(B)〉 +

1
2
〈Hee(B)〉+Ω′(µ, β)

)
1
〈ρ̂〉

∂

∂µ
〈ρ̂〉(µ, β)

− ∂

∂µ
Ω′(µ, β) = 〈ρ̂〉. (25)

Similar as above we get for the energy of the ν = 1/φ̃
system

U=−
(
〈H0(B)〉+ 1

2
〈Hee(B)〉+Ω′(µ, β)

)
β

1
〈ρ̂〉

∂

∂β
〈ρ̂〉(µ, β)

+
∂

∂β
(βΩ′)(µ, β) + µ〈ρ̂〉. (26)

In the case of a determination of the energy and the
chemical potential to order e2 it is possible to get
〈H0〉 + 1

2 〈Hee〉 from Ω′ for low temperatures. In the
following we will derive this relation at first for T = 0.
Afterwards we will generalize the results to the case of
low temperatures. It is well known from perturbation
theory that the ground state wave function has only
higher Landau level components scaling with e2. So we
get for temperature T = 0

〈H0(B)〉 = πφ̃
〈ρ̂〉2
m

+O(e4). (27)

For T > 0 it is no longer correct that the second term
of the e2-expansion of 〈H0(B)〉 scales like e4. Neverthe-
less because of the discreteness of the Landau levels we
obtain that these T -corrections are exponentially vanish-
ing for T → 0. The reason for this is that due to the
expansions (1) and (2) there is a coupling factor e2

0 such
that we get no overlap between the energy eigen values of
wave functions resulting from the lowest Landau level by
Coulomb perturbations and wave functions resulting from
higher Landau levels for all e2 ≤ e2

0. Since 1/β � ρ/m

for both expansions (1) and (2) we get that the kinetic
energy resulting from wave functions of higher Landau
levels by Coulomb perturbations are suppressed exponen-
tially with exp[−βρ/m]. Since we are only interested in
polynomial T -contributions to the energy we can neglect
these T -corrections in (27). Under the consideration of
equation (27) we can get 〈Hee〉 up to order e2 from Ω by

[〈Hee(B)〉]e2 = [U(〈ρ̂〉, β)]e2

=
[
∂(βΩ)
∂β

(µ(〈ρ̂〉, β), β, 〈ρ̂〉, 2πφ̃〈ρ̂〉) + µ(〈ρ̂〉, β)〈ρ̂〉
]
e2
.

(28)

We denote by [...]e2 the e2-part of the bracket for T = 0.
In the case of low temperatures T we have to distinguish
between the two low temperature expansions (1) and (2).
In the case of the temperature expansion (1) [...]e2 is given
by the e2(ρ)3/2/(βρ/m)n (n ≥ 0) terms of the bracket.
For the temperature expansion (2) [...]e2 is given by the
e2(ρ)3/2/(βe2√ρ)n (n ≥ 0) terms of the bracket. We may
now determine the chemical potential and the energy in
every order of 1/β by using successive the equations (25–
28) under consideration that limβ→∞

∂
∂β 〈ρ̂〉 = O(1/β1+ε)

for a number ε with ε > 0. Thus we can calculate the
chemical potential and the energy to every order in 1/β
through a finite number of successive insertions of these
equations. Doing this for T = 0 we get

(
1

2〈ρ̂〉

[
∂

∂β
(βΩ′)(µ(〈ρ̂〉,∞),∞) + µ(〈ρ̂〉,∞)〈ρ̂〉

]
e2

+
1
〈ρ̂〉Ω

′(µ,∞) + (πφ̃)
〈ρ̂〉
m

)
∂

∂µ
〈ρ̂〉(µ, β)− ∂

∂µ
Ω′(µ,∞)

= 〈ρ̂〉 (29)

and

U =
∂(βΩ′)
∂β

(µ,∞) + µ〈ρ̂〉. (30)

By reducing equation (29) to the Chern-Simons gas with-
out Coulomb interaction we get a difference of a sum-
mand 1

〈ρ̂〉Ω
′(µ,∞) ∂

∂µ〈ρ̂〉(µ,∞) between the equations (14)
and (29). The grand canonical potential for an electron
gas in a magnetic field without Coulomb interaction is
given by

ΩB(µ, β,B) = − 1
2π

B

β

×
∑
n

log
(

1 + exp
[
−β
((

n+
1
2

)
B

m
− µ

)])
. (31)

The chemical potential at low temperatures for the ν =
1/2 gas is given by [14] µ = (2πρ)

m + O(e−βρ/m). Since
limβ→∞Ω′(µ(ρ, β), β) = O(1/β) we obtain for T = 0 that
the equations (14) and (29) are in accordance.
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3 The chemical potential and the energy
of the ν = 1/2 Chern-Simons system
for T ≥ 0

In this section we will calculate the chemical potential and
the energy of the ν = 1/2 system for low temperatures T
and e2√ρ� ρ/m. As written in the introduction there are
two parameter ranges for an expansion of the energy and
the chemical potential. These are given in (1) and (2). In
the following we will calculate in subsection A the chem-
ical potential and the energy in the parameter range (1).
In subsection B we will calculate the chemical potential
and the energy within the parameter range (2).

3.1 The chemical potential and the energy
of the ν = 1/2 Chern-Simons system
for e2√ρ� 1/β� ρ/m

As mentioned in the introduction the Chern-Simons
perturbations theory has its validity in the parameter
range (1). Thus it is possible to calculate the energy and
the chemical potential in this parameter range within the
Hartree-Fock approximation. As mentioned in the last
section one gets exponentially vanishing temperature cor-
rections to the chemical potential and the energy at low
temperatures for the ν = 1/2 system without Coulomb in-
teraction. They are not calculable by perturbational meth-
ods. Because of this we will calculate only the Coulomb
part of the grand canonical potential perturbationally.
The exact magnetic part of the grand canonical poten-
tial is given by ΩB(µ, β, (2πφ̃)ρ∗) (31). In this expression
ρ∗ is defined by ρ∗ := ∂/(∂µ)ΩB(µ, β, (2πφ̃)ρ∗). As we
mentioned above in the case of the ν = 1/2 system we
have for low temperatures [14] ρ∗ = mµ/(2π) + O(e−βµ).
The grand canonical potential is then given by (the ex-
act form of Ω in the Hartree-Fock approximation will be
derived later)

Ω(µ, β) = ΩB(µ, β, (2πφ̃ρ∗)) + a1 e
2m

3
2µ

3
2 +a2 e

2m
3
2µ

1
2

1
β

+ a3 e
2m

3
2

1
µ

1
2

1
β2

+ a4 e
2m

3
2

1
µ

1
2

1
β2

log
(

1
µβ

)
+O(e2/(µ3/2β3)) +O(e4m2µ

1
2 ). (32)

In the following we will denoteΩ(µ, β)−ΩB(µ, β, (2πφ̃ρ∗))
by Ωc(µ, β). We now make the following ansatz for the
terms of µ which scales polynomial with 1/β:

µ(ρ, β) = πφ̃
ρ

m
+ b1 e

2ρ
1
2 + b2 e

2 m

ρ
1
2

1
β

+ b3e
2m

2

ρ
3
2

1
β2

+ b4e
2m

2

ρ
3
2

1
β2

log
(
m

ρβ

)
. (33)

In the following we will denote the first term in the sum
of µ(ρ, β) by µ0ρ, β). µ(ρ, β)−µ0(ρ, β) will be denoted by

µc(ρ, β). We get for µc inserting (27, 28, 32, 33) in (25)
and taking into consideration ρ∗ = mµ/(2π) +O(e−βµ):

− ∂µ0

∂ρ

∂Ωc

∂µ
+
(

1
2

(
∂(βΩc)
∂β

+ µcρ

)
+Ωc

)
1
ρ

+
(
µc

ρ
− ∂µc

∂ρ

)
ΩB
µ

= ρ
∂µc

∂ρ· (34)

We will solve this equation by comparing the coefficients
of equal powers of β. If one inspects the equation of the
coefficient of (β)0 in (34) one notices that the coefficient
b1 vanishes in this equation and one gets a trivial identity
which is fulfilled for every chosen b1. The reason for this
indeterminacy of b1 is given by the partition of Ω in a
sum of a pure Chern-Simons term and e2-corrections to
Ω (this could be seen by using (16, 29)). Since this parti-
tion is not correct we have no equation to determine the
coefficient b1. For this reason we have to start properly
with a Chern-Simons perturbation theory which shows a
more complicated mean field. This will be done in a later
publication. We now set b1 = 0. This could be justified by
the Luttinger-Ward theorem [11] as a good approximation
calculating the T = 0 energy Ω in RPA because the RPA
does not contain any anomalous graphs [9,10]. By com-
paring the coefficients of the higher order powers of 1/β
in (34) we get for the ν = 1/2 system

µ = 2π
ρ

m
− a2e

2

√
2π
2

m

ρ
1
2

1
β
−
(
a3

2
+

3a2 log(2)
4

)
× e2 1√

2π
m2

ρ
3
2

1
β2
− a4e

2 1
2
√

2π
m2

ρ
3
2

1
β2

log
(

m

2πρβ

)
. (35)

With the help of the equations (26, 27) and (28) the energy
density up to order e2 is given by

U = 2π
ρ2

m
+
∂(βΩc)
∂β

− β2π
ρ

m

∂ρc(µ, β)
∂β

∣∣∣∣
µ=µ(ρ,β)

− βΩB
ρ

∂ρc(µ, β)
∂β

∣∣∣∣
µ=µ(ρ,β)

+ µcρ. (36)

ρc(µ, β) in (36) is defined by ρ(µ, β)−mµ/(2π). With the
help of (32, 36) we get for the energy of the ν = 1/2 system

U = (2π)
ρ2

m
+ a1e

2(2πρ)
3
2 −

(
(a3 + a4)

2
+
a2 log(2)

4

)
× e2 m2

(2πρ)
1
2

1
β2
− a4e

2 m2

2(2πρ)
1
2

log
(

m

2πρβ

)
1
β2
· (37)

In the following we will calculate the Coulomb part of
the Hartree-Fock approximation of HCS (4). This term is
equal to the Coulomb exchange Feynman graph given by

Exee =
1

2 (2π)3

∫
d2kd2k′ nF(k)nF(k′)V ee(|k− k′|).

(38)

nF(k) is the Fermi factor nF(k) = 1/(1 + eβ(k2/(2m)−µ)).
Exee is also the e2-part of the grand canonical potential
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of the (two dimensional) Coulomb gas. This term was cal-
culated by Isihara and Toyoda [13] within the calculation
of the grand canonical potential of the two dimensional
electron gas. Up to order 1/β2 it is given by

Exee ≈ −0.095 e2m
3
2µ

3
2

+
(

0.035− 0.0588 log
(

1
µβ

))
e2m

3
2

µ
1
2

1
β2
· (39)

By using (32, 35, 37) and (39) we get for the chemical
potential µHF and the energy UHF in the Hartree-Fock
approximation

µHF = 2π
ρ

m
− 0.017 e2 1√

2π
m2

ρ
3
2

1
β2

+ 0.029 e2 1√
2π

m2

ρ
3
2

1
β2

log
(

m

2πρβ

)
, (40)

UHF = (2π)
ρ2

m
− 0.095 e2(2πρ)

3
2 + 0.012 e2 m2

(2πρ)
1
2

1
β2

+ 0.029e2 m2

(2πρ)
1
2

1
β2

log
(

m

2πρβ

)
. (41)

For T = 0 the Coulomb part of UHF is in good agree-
ment with the Coulomb energy of numerical simulation of
electrons on a sphere by Morf and d’Ambrumenil [18] and
by Girlich [19] (≈ −0.1 e2(2πρ)3/2). We can now compare
the e2-part of the energy of the ν = 1/2 system with the
e2-part of the energy of the Coulomb system including
the spin degree of freedom. The energy up to order e2 of
the two dimensional Coulomb system was calculated by
Isihara and Toyoda [13]. It is calculated from the grand
canonical potential up to order e2 which is the summa-
tion of the grand canonical potential of an interaction free
electron gas and the Coulomb exchange graph. Isihara and
Toyoda calculated for this energy

UCoul =
π

2
ρ2

m
+

π

12
m

1
β2
− 0.067 e2(2πρ)

3
2

+ 0.063 e2 m2

(2πρ)
1
2

1
β2

+ 0.166 e2 m2

(2πρ)
1
2

1
β2

log
(
m

πρβ

)
.

(42)

In Figure 2 we show the e2-Coulomb energy of the ν = 1/2
system in Hartree-Fock approximation as well as the e2-
Coulomb energy of the two dimensional Coulomb system
(the spin polarized system as well as the system including
the spin degree of freedom). It is seen from these curves
that the energy curve of the CS gas has a much less steeper
slope in comparison to the Coulomb gas including the
spin degree of freedom. Furthermore, one sees from the
figure that the main responsibility for this behaviour is
the spin polarization of the CS gas. But also the µ and
energy correction formulas of the CS gas of Section 2 in-
crease this effect. The flatness of the energy curve can be
understood by perturbational arguments. As mentioned
below (27) 〈H0(B)〉 does not contribute to the energy in
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Fig. 2. The e2 part of the energy density of the Coulomb-
(Coul) as well as the ν = 1/2 Chern-Simons (CS) gas. The
energy density is given in units of e2/r3

s , where rs is the electron
radius ρ = 1/(πr2

s). The curve Coul is the e2-energy density
of the two dimensional Coulomb gas (42) including the spin
degree of freedom. The curve CS is the e2-energy density of
the ν = 1/2 Chern-Simons gas (41) originating from the spin
polarized Coulomb exchange graph under consideration of the
equations (35) and (37). The dashed curve is the e2-energy
density of a spin polarized two dimensional Coulomb gas.

e2-order for T ≥ 0. Thus the energy is given by the aver-
age value 〈Hee(B)〉 calculated with respect to the Gibb’s
weight times the eigen functions of H0(B)+Hee(B) which
result from the lowest Landau level by Coulomb pertur-
bations. It is easily seen that this term does not have any
temperature corrections up to order e2. Therefore, we get
that the ν = 1/2 Chern-Simons system does only pick up
temperature corrections in higher O(e4) order in the pa-
rameter range (1). Summarizing, we get an agreement of
the perturbational calculated energy (41) with this exact
result.

3.2 The chemical potential and the energy
of the ν = 1/2 Chern-Simons system
for 1/β� e2√ρ� ρ/m

As mentioned in the introduction of this paper the chem-
ical potential and the energy in the parameter range (2)
can not be calculated perturbationally through the Chern-
Simons theory. HLR [1] and Kim, Lee [15] used the RPA
for a resummation of diagrams to calculate the temper-
ature corrections of the grand canonical potential in this
parameter range. We will use in the following the result of
their calculation to obtain the chemical potential and the
energy of the ν = 1/2 system. As in the last subsection
we do not determine the first term in the expansion of the
grand canonical potential in the parameter range (2) per-
turbationally. This term is given by the grand canonical
potential of an electron gas in the lowest Landau level.
This can be calculated through ΩB(µβ, (2πφ̃ρ∗)) limit-
ing the summation in (31) to the lowest Landau level
(n = 0). Since the higher Landau level terms contribute to
the chemical potential and the energy with exponentially
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vanishing temperature corrections we will use in the fol-
lowing the full ΩB(µβ, (2πφ̃ρ∗)). Thus the grand canonical
potential of the ν = 1/2 system in the parameter range (2)
is of the following form

Ω(µ, β) = ΩB(µ, β, (2πφ̃ρ∗)) + a′1 e
2m

3
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3
2 + a′2mµ

1
β

+ a′3
1
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1
2µ

1
2

1
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1
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1
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1
2

1
β2

log
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1
e2√mµβ

)
+O(1/(e4β3)) +O(e4m2µ). (43)

We now make the following ansatz for the terms of µ which
scales polynomial with 1/β:

µ(ρ, β) = πφ̃
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log
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1
e2√ρβ

)
.

(44)

Using the results of the last section (see the discussion be-
low (28)) it is easy to see that the equations (34) and (36),
determining the chemical potential and the energy are still
valid for the approximation (43, 44). By using these equa-
tions we get with the help of the grand canonical poten-
tial (43) for the ν = 1/2 system (as in the last subsection
we set b′1 = 0)

µ = 2π
ρ

m
· (45)

The energy of the ν = 1/2 system is given by

U = (2π)
ρ2

m
+ a′1e

2(2πρ)
3
2 − (a′3 + a′4)

1
e2

(2πρ)
1
2

1
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1
e2

(2πρ)
1
2

1
β2

log
(

1
e2√ρβ

)
. (46)

As mentioned above HLR [1] and Kim, Lee [15] calcu-
lated the temperature correction terms in (43) through a
resummation of the RPA. The e2-order term of the grand
canonical potential in RPA for temperature T = 0 was
calculated by us in [9]. By using these two results we get
for the grand canonical potential (43)

ΩRPA(µ, β) = ΩB(µ, β, (2πφ̃ρ∗))− 0.13 e2m
3
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3
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1
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)
.

(47)

By using this grand canonical potential we
obtain from (45) and (46) up to the order
O((1/β2) log(1/e2√ρβ))

µRPA = 2π
ρ

m
, (48)

URPA = 2π
ρ2

m
− 0.13 e2 (2πρ)

3
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√
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3
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e2
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1
2

1
β2

log
(

1
e2√ρβ

)
. (49)

In [15] the temperature corrections to the ground state en-
ergy was calculated by ∂(βΩRPA)/(∂β) (2πρ/m, β). When
comparing this expression with the temperature correc-
tions of URPA (49) we get the same result. This is also
correct for the full Ω (43). This is the reason for getting
the same effective mass either by determining the effective
mass through the one particle Green’s function or through
a comparison of the specific heat of the ν = 1/2 system
with the specific heat of an interaction free electron sys-
tem (one can easily show from the equations above that
this does not depend on the setting b′1 = 0). The accor-
dance of these two masses is well known in the case of the
Coulomb system.

4 Conclusion

We considered in this paper at first the question whether
corrections to the well known equations for determining
in a Chern-Simons theory the chemical potential and the
energy from a grand canonical potential in which one has
eliminated the magnetic field and the field of the posi-
tive background through a mean field formalism should
be taken into account. We showed that one gets correc-
tions to these well known equations in contrast to the
Coulomb system. We stated explicitly these corrections.
Furthermore, we showed that these corrections can be de-
termined from the grand canonical potential calculated
by this mean field formalism. We should mention that our
equations determining the chemical potential and the en-
ergy from this field eliminated grand canonical potential
of the ν = 1/2 system are also valid for other theories
than the Chern-Simons theory of HLR.

With the help of these corrections and the well
known result [13] for the grand canonical potential of the
Coulomb exchange graph we calculated next the Hartree-
Fock energy of the spin polarized ν = 1/2 Chern-Simons
system for low temperatures T > 0 up to order T 2.
The parameter range of the calculated chemical poten-
tial and the energy is given by e2√ρ � 1/β � ρ/m.
We compared the energy with the energy of the two di-
mensional Coulomb gas taking into account the spin de-
grees of freedom. We get that the spin polarization as
well as the corrections to the equations determining the
chemical potential and the energy cause the energy as a
function of the temperature to flatten. We showed that
the exact behaviour of the energy within our approxima-
tion would have temperature corrections which are zero.
Next we calculated the chemical potential and the energy
from the temperature corrections of the grand canoni-
cal potential obtained in the RPA [1,15]. The parameter
range of the chemical potential and the energy is given by
1/β � e2√ρ � ρ/m. We showed that one gets the same
result for the energy as in the simplification [15] by using
the chemical potential of the interaction free ν = 1/2 sys-
tem for temperature T = 0 and neglecting the corrections
in the equation for determining the energy from the grand
canonical potential.

Finally we mention that it should be in principle pos-
sible to calculate the energy of the ν = 1/2 system for
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temperatures T > 0 through temperature heat capacity
measurements. This was earlier done by Bayot et al. for
the ν ≈ 1 system [20].
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17. T. Chakraborty, P. Pietiläinen, The Fractional Quantum

Hall effect (Springer Verlag, New York, 1995).
18. R. Morf, N. d’Ambrumenil, Phys. Rev. Lett. 74, 5116

(1995).
19. U. Girlich, Ph.D. Thesis, University of Leipzig (1999) (un-

published).
20. V. Bayot et al., Phys. Rev. Lett. 76, 4584 (1996).


